dcase_framework.learners.SceneClassifierKerasSequential¶
-
class
dcase_framework.learners.
SceneClassifierKerasSequential
(*args, **kwargs)[source]¶ Sequential Keras model for Acoustic scene classification
Methods
__init__
(\*args, \*\*kwargs)clear
(() -> None. Remove all items from D.)copy
(() -> a shallow copy of D)create_callback_list
()Create list of Keras callbacks create_external_metric_evaluators
()Create external metric evaluators create_model
(input_shape)Create sequential Keras model detect_file_format
(filename)Detect file format from extension empty
()Check if file is empty exists
()Checks that file exists fromkeys
(...)v defaults to None. get
((k[,d]) -> D[k] if k in D, ...)get_dump_content
(data)Clean internal content for saving get_file_information
()Get file information, filename get_hash
([data])Get unique hash string (md5) for given parameter dict get_hash_for_path
([dotted_path])get_path
(dotted_path[, default, data])Get value from nested dict with dotted path get_processing_interval
()Processing interval has_key
((k) -> True if D has a key k, else False)items
(() -> list of D’s (key, value) pairs, ...)iteritems
(() -> an iterator over the (key, ...)iterkeys
(() -> an iterator over the keys of D)itervalues
(...)keras_model_exists
()Check that keras model exists on disk keys
(() -> list of D’s keys)learn
(data, annotations[, data_filenames, ...])Learn based on data and annotations load
(\*args, \*\*kwargs)Load file log
([level])Log container content log_model_summary
()Prints model summary to the logging interface. merge
(override[, target])Recursive dict merge plot_model
([filename, show_shapes, ...])Plots model topology pop
((k[,d]) -> v, ...)If key is not found, d is returned if given, otherwise KeyError is raised popitem
(() -> (k, v), ...)2-tuple; but raise KeyError if D is empty. predict
(feature_data)Predict frame probabilities for given feature matrix prepare_activity
(activity_matrix_dict, files)Concatenate activity matrices into one activity matrix prepare_data
(data, files[, processor])Concatenate feature data into one feature matrix save
(\*args, \*\*kwargs)Save file set_path
(dotted_path, new_value[, data])Set value in nested dict with dotted path set_seed
([seed])Set randomization seeds setdefault
((k[,d]) -> D.get(k,d), ...)show
()Print container content update
(([E, ...)If E present and has a .keys() method, does: for k in E: D[k] = E[k] values
(() -> list of D’s values)viewitems
(...)viewkeys
(...)viewvalues
(...)Attributes
class_labels
Class labels data_processor
Feature processing chain data_processor_training
Feature processing chain feature_aggregator
Feature aggregator instance feature_masker
Feature masker instance feature_normalizer
Feature normalizer instance feature_stacker
Feature stacker instance learner_params
Get learner parameters from parameter container method
Learner method label model
Acoustic model params
Parameters valid_formats