dcase_framework.learners.SceneClassifierKerasSequential¶
-
class
dcase_framework.learners.SceneClassifierKerasSequential(*args, **kwargs)[source]¶ Sequential Keras model for Acoustic scene classification
Methods
__init__(\*args, \*\*kwargs)clear(() -> None. Remove all items from D.)copy(() -> a shallow copy of D)create_callback_list()Create list of Keras callbacks create_external_metric_evaluators()Create external metric evaluators create_model(input_shape)Create sequential Keras model detect_file_format(filename)Detect file format from extension empty()Check if file is empty exists()Checks that file exists fromkeys(...)v defaults to None. get((k[,d]) -> D[k] if k in D, ...)get_dump_content(data)Clean internal content for saving get_file_information()Get file information, filename get_hash([data])Get unique hash string (md5) for given parameter dict get_hash_for_path([dotted_path])get_path(dotted_path[, default, data])Get value from nested dict with dotted path get_processing_interval()Processing interval has_key((k) -> True if D has a key k, else False)items(() -> list of D’s (key, value) pairs, ...)iteritems(() -> an iterator over the (key, ...)iterkeys(() -> an iterator over the keys of D)itervalues(...)keras_model_exists()Check that keras model exists on disk keys(() -> list of D’s keys)learn(data, annotations[, data_filenames, ...])Learn based on data and annotations load(\*args, \*\*kwargs)Load file log([level])Log container content log_model_summary()Prints model summary to the logging interface. merge(override[, target])Recursive dict merge plot_model([filename, show_shapes, ...])Plots model topology pop((k[,d]) -> v, ...)If key is not found, d is returned if given, otherwise KeyError is raised popitem(() -> (k, v), ...)2-tuple; but raise KeyError if D is empty. predict(feature_data)Predict frame probabilities for given feature matrix prepare_activity(activity_matrix_dict, files)Concatenate activity matrices into one activity matrix prepare_data(data, files[, processor])Concatenate feature data into one feature matrix save(\*args, \*\*kwargs)Save file set_path(dotted_path, new_value[, data])Set value in nested dict with dotted path set_seed([seed])Set randomization seeds setdefault((k[,d]) -> D.get(k,d), ...)show()Print container content update(([E, ...)If E present and has a .keys() method, does: for k in E: D[k] = E[k] values(() -> list of D’s values)viewitems(...)viewkeys(...)viewvalues(...)Attributes
class_labelsClass labels data_processorFeature processing chain data_processor_trainingFeature processing chain feature_aggregatorFeature aggregator instance feature_maskerFeature masker instance feature_normalizerFeature normalizer instance feature_stackerFeature stacker instance learner_paramsGet learner parameters from parameter container methodLearner method label modelAcoustic model paramsParameters valid_formats