dcase_framework.keras_utils.FeatureGenerator¶
-
class
dcase_framework.keras_utils.FeatureGenerator(*args, **kwargs)[source]¶ Feature data generator
Constructor
Parameters: files : list of str
List of active item identifies, usually filenames
data_filenames : dict of dicts
Data structure keyed with item identifiers (defined with files parameter), data dict feature extractor labels as keys and values the filename on disk.
annotations : dict of MetaDataContainers or MetaDataItems
Annotations for all items keyed with item identifiers
class_labels : list of str
Class labels in a list
hop_length_seconds : float
Analysis frame hop length in seconds Default value 0.2
shuffle : bool
Shuffle data before each epoch Default value True
batch_size : int
Batch size to generate Default value 64
buffer_size : int
Internal item buffer size, set large enough for smaller dataset to avoid loading Default value 256
data_processor : class
Data processor class used to process load features
data_refresh_on_each_epoch : bool
Internal data buffer reset at the start of each epoch Default value False
label_mode : str (‘event’, ‘scene’)
Activity matrix forming mode. Default value “event”
-
__init__(*args, **kwargs)[source]¶ Constructor
Parameters: files : list of str
List of active item identifies, usually filenames
data_filenames : dict of dicts
Data structure keyed with item identifiers (defined with files parameter), data dict feature extractor labels as keys and values the filename on disk.
annotations : dict of MetaDataContainers or MetaDataItems
Annotations for all items keyed with item identifiers
class_labels : list of str
Class labels in a list
hop_length_seconds : float
Analysis frame hop length in seconds Default value 0.2
shuffle : bool
Shuffle data before each epoch Default value True
batch_size : int
Batch size to generate Default value 64
buffer_size : int
Internal item buffer size, set large enough for smaller dataset to avoid loading Default value 256
data_processor : class
Data processor class used to process load features
data_refresh_on_each_epoch : bool
Internal data buffer reset at the start of each epoch Default value False
label_mode : str (‘event’, ‘scene’)
Activity matrix forming mode. Default value “event”
Methods
__init__(\*args, \*\*kwargs)Constructor generator()Generator method get_activity_matrix(annotation, data_length)Convert annotation into activity matrix and run it through data processor. info()Information logging on_epoch_end()on_epoch_start()process_item(item)Attributes
data_sizeTotal data amount input_sizeLength of input feature vector steps_countNumber of batches in one epoch -