dcase_framework.keras_utils.StopperCallback¶
-
class
dcase_framework.keras_utils.
StopperCallback
(*args, **kwargs)[source]¶ Keras callback to stop training when improvement has not seen in specified amount of epochs. Implements Keras Callback API.
Callback is very similar to standard
EarlyStopping
Keras callback, however it adds support for external metrics (calculated outside Keras training process).Constructor
Parameters: epochs : int
Total amount of epochs
manual_update : bool
Manually update callback, use this to when injecting external metrics Default value True
monitor : str
Metric value to be monitored Default value “val_loss”
patience : int
Number of epochs with no improvement after which training will be stopped. Default value 0
min_delta : float
Minimum change in the monitored quantity to qualify as an improvement. Default value 0
initial_delay : int
Amount of epochs to wait at the beginning before quantity is monitored. Default value 10
-
__init__
(*args, **kwargs)[source]¶ Constructor
Parameters: epochs : int
Total amount of epochs
manual_update : bool
Manually update callback, use this to when injecting external metrics Default value True
monitor : str
Metric value to be monitored Default value “val_loss”
patience : int
Number of epochs with no improvement after which training will be stopped. Default value 0
min_delta : float
Minimum change in the monitored quantity to qualify as an improvement. Default value 0
initial_delay : int
Amount of epochs to wait at the beginning before quantity is monitored. Default value 10
Methods
__init__
(\*args, \*\*kwargs)Constructor add_external_metric
(metric_label)get_operator
(metric)on_batch_begin
(batch[, logs])on_batch_end
(batch[, logs])on_epoch_begin
(epoch[, logs])on_epoch_end
(epoch[, logs])on_train_begin
([logs])on_train_end
([logs])set_external_metric_value
(metric_label, ...)Add external metric value set_model
(model)set_params
(params)stop
()update
()-