dcase_framework.learners.EventDetector¶
-
class
dcase_framework.learners.EventDetector(*args, **kwargs)[source]¶ Event detector (Frame classifier / Multi-class - Multi-label)
Constructor
Parameters: method : str
Method label Default value “None”
class_labels : list of strings
List of class labels Default value “[]”
params : dict or DottedDict
Parameters
feature_masker : FeatureMasker or class inherited from FeatureMasker
Feature masker instance Default value “None”
feature_normalizer : FeatureNormalizer or class inherited from FeatureNormalizer
Feature normalizer instance Default value “None”
feature_stacker : FeatureStacker or class inherited from FeatureStacker
Feature stacker instance Default value “None”
feature_aggregator : FeatureAggregator or class inherited from FeatureAggregator
Feature aggregator instance Default value “None”
logger : logging
Instance of logging Default value “None”
disable_progress_bar : bool
Disable progress bar in console Default value “False”
log_progress : bool
Show progress in log. Default value “False”
show_extra_debug : bool
Show extra debug information Default value “True”
-
__init__(*args, **kwargs)¶ Constructor
Parameters: method : str
Method label Default value “None”
class_labels : list of strings
List of class labels Default value “[]”
params : dict or DottedDict
Parameters
feature_masker : FeatureMasker or class inherited from FeatureMasker
Feature masker instance Default value “None”
feature_normalizer : FeatureNormalizer or class inherited from FeatureNormalizer
Feature normalizer instance Default value “None”
feature_stacker : FeatureStacker or class inherited from FeatureStacker
Feature stacker instance Default value “None”
feature_aggregator : FeatureAggregator or class inherited from FeatureAggregator
Feature aggregator instance Default value “None”
logger : logging
Instance of logging Default value “None”
disable_progress_bar : bool
Disable progress bar in console Default value “False”
log_progress : bool
Show progress in log. Default value “False”
show_extra_debug : bool
Show extra debug information Default value “True”
Methods
__init__(\*args, \*\*kwargs)Constructor clear(() -> None. Remove all items from D.)copy(() -> a shallow copy of D)detect_file_format(filename)Detect file format from extension empty()Check if file is empty exists()Checks that file exists fromkeys(...)v defaults to None. get((k[,d]) -> D[k] if k in D, ...)get_dump_content(data)Clean internal content for saving get_file_information()Get file information, filename get_hash([data])Get unique hash string (md5) for given parameter dict get_hash_for_path([dotted_path])get_path(dotted_path[, default, data])Get value from nested dict with dotted path has_key((k) -> True if D has a key k, else False)items(() -> list of D’s (key, value) pairs, ...)iteritems(() -> an iterator over the (key, ...)iterkeys(() -> an iterator over the keys of D)itervalues(...)keys(() -> list of D’s keys)learn(data, annotations[, data_filenames])load(\*args, \*\*kwargs)Load file log([level])Log container content merge(override[, target])Recursive dict merge pop((k[,d]) -> v, ...)If key is not found, d is returned if given, otherwise KeyError is raised popitem(() -> (k, v), ...)2-tuple; but raise KeyError if D is empty. save(\*args, \*\*kwargs)Save file set_path(dotted_path, new_value[, data])Set value in nested dict with dotted path set_seed([seed])Set randomization seeds setdefault((k[,d]) -> D.get(k,d), ...)show()Print container content update(([E, ...)If E present and has a .keys() method, does: for k in E: D[k] = E[k] values(() -> list of D’s values)viewitems(...)viewkeys(...)viewvalues(...)Attributes
class_labelsClass labels feature_aggregatorFeature aggregator instance feature_maskerFeature masker instance feature_normalizerFeature normalizer instance feature_stackerFeature stacker instance learner_paramsGet learner parameters from parameter container methodLearner method label modelAcoustic model paramsParameters valid_formats-