dcase_framework.learners.EventDetector¶
- 
class dcase_framework.learners.EventDetector(*args, **kwargs)[source]¶
- Event detector (Frame classifier / Multi-class - Multi-label) - Constructor - Parameters: - method : str - Method label Default value “None” - class_labels : list of strings - List of class labels Default value “[]” - params : dict or DottedDict - Parameters - feature_masker : FeatureMasker or class inherited from FeatureMasker - Feature masker instance Default value “None” - feature_normalizer : FeatureNormalizer or class inherited from FeatureNormalizer - Feature normalizer instance Default value “None” - feature_stacker : FeatureStacker or class inherited from FeatureStacker - Feature stacker instance Default value “None” - feature_aggregator : FeatureAggregator or class inherited from FeatureAggregator - Feature aggregator instance Default value “None” - logger : logging - Instance of logging Default value “None” - disable_progress_bar : bool - Disable progress bar in console Default value “False” - log_progress : bool - Show progress in log. Default value “False” - show_extra_debug : bool - Show extra debug information Default value “True” - 
__init__(*args, **kwargs)¶
- Constructor - Parameters: - method : str - Method label Default value “None” - class_labels : list of strings - List of class labels Default value “[]” - params : dict or DottedDict - Parameters - feature_masker : FeatureMasker or class inherited from FeatureMasker - Feature masker instance Default value “None” - feature_normalizer : FeatureNormalizer or class inherited from FeatureNormalizer - Feature normalizer instance Default value “None” - feature_stacker : FeatureStacker or class inherited from FeatureStacker - Feature stacker instance Default value “None” - feature_aggregator : FeatureAggregator or class inherited from FeatureAggregator - Feature aggregator instance Default value “None” - logger : logging - Instance of logging Default value “None” - disable_progress_bar : bool - Disable progress bar in console Default value “False” - log_progress : bool - Show progress in log. Default value “False” - show_extra_debug : bool - Show extra debug information Default value “True” 
 - Methods - __init__(\*args, \*\*kwargs)- Constructor - clear(() -> None. Remove all items from D.)- copy(() -> a shallow copy of D)- detect_file_format(filename)- Detect file format from extension - empty()- Check if file is empty - exists()- Checks that file exists - fromkeys(...)- v defaults to None. - get((k[,d]) -> D[k] if k in D, ...)- get_dump_content(data)- Clean internal content for saving - get_file_information()- Get file information, filename - get_hash([data])- Get unique hash string (md5) for given parameter dict - get_hash_for_path([dotted_path])- get_path(dotted_path[, default, data])- Get value from nested dict with dotted path - has_key((k) -> True if D has a key k, else False)- items(() -> list of D’s (key, value) pairs, ...)- iteritems(() -> an iterator over the (key, ...)- iterkeys(() -> an iterator over the keys of D)- itervalues(...)- keys(() -> list of D’s keys)- learn(data, annotations[, data_filenames])- load(\*args, \*\*kwargs)- Load file - log([level])- Log container content - merge(override[, target])- Recursive dict merge - pop((k[,d]) -> v, ...)- If key is not found, d is returned if given, otherwise KeyError is raised - popitem(() -> (k, v), ...)- 2-tuple; but raise KeyError if D is empty. - save(\*args, \*\*kwargs)- Save file - set_path(dotted_path, new_value[, data])- Set value in nested dict with dotted path - set_seed([seed])- Set randomization seeds - setdefault((k[,d]) -> D.get(k,d), ...)- show()- Print container content - update(([E, ...)- If E present and has a .keys() method, does: for k in E: D[k] = E[k] - values(() -> list of D’s values)- viewitems(...)- viewkeys(...)- viewvalues(...)- Attributes - class_labels- Class labels - feature_aggregator- Feature aggregator instance - feature_masker- Feature masker instance - feature_normalizer- Feature normalizer instance - feature_stacker- Feature stacker instance - learner_params- Get learner parameters from parameter container - method- Learner method label - model- Acoustic model - params- Parameters - valid_formats
-