dcase_framework.keras_utils.ProgressPlotterCallback¶
-
class
dcase_framework.keras_utils.ProgressPlotterCallback(*args, **kwargs)[source]¶ Keras callback to plot progress during the training process and save final progress into figure. Implements Keras Callback API.
Constructor
Parameters: epochs : int
Total amount of epochs
metric : str
Metric name
manual_update : bool
Manually update callback, use this to when injecting external metrics Default value True
interactive : bool
Show plot during the training and update with plotting rate Default value True
plotting_rate : int
Plot update rate in seconds Default value 10
save : bool
Save plot on disk, plotting rate applies
filename : str
Filename of figure Default value 1
focus_span : int
Epoch amount to highlight, and show separately in the plot. Default value 10
-
__init__(*args, **kwargs)[source]¶ Constructor
Parameters: epochs : int
Total amount of epochs
metric : str
Metric name
manual_update : bool
Manually update callback, use this to when injecting external metrics Default value True
interactive : bool
Show plot during the training and update with plotting rate Default value True
plotting_rate : int
Plot update rate in seconds Default value 10
save : bool
Save plot on disk, plotting rate applies
filename : str
Filename of figure Default value 1
focus_span : int
Epoch amount to highlight, and show separately in the plot. Default value 10
Methods
__init__(\*args, \*\*kwargs)Constructor add_external_metric(metric_label)Add external metric to be monitored close()Manually close progress logging draw()Draw plot get_operator(metric)on_batch_begin(batch[, logs])on_batch_end(batch[, logs])on_epoch_begin(epoch[, logs])on_epoch_end(epoch[, logs])on_train_begin([logs])on_train_end([logs])set_external_metric_value(metric_label, ...)Add external metric value set_model(model)set_params(params)update()Update update_progress_bar([increase])Update progress to tqdm progress bar update_progress_log()Update progress to logging interface -