sed_eval.sound_event.EventBasedMetrics¶
-
class
sed_eval.sound_event.
EventBasedMetrics
(event_label_list, evaluate_onset=True, evaluate_offset=True, t_collar=0.2, percentage_of_length=0.5, event_matching_type='optimal', **kwargs)[source]¶ Constructor
Parameters: event_label_list : list
List of unique event labels
evaluate_onset : bool
Evaluate onset. Default value True
evaluate_offset : bool
Evaluate offset. Default value True
t_collar : float (0,]
Time collar used when evaluating validity of the onset and offset, in seconds. Default value 0.2
percentage_of_length : float in [0, 1]
Second condition, percentage of the length within which the estimated offset has to be in order to be consider valid estimation. Default value 0.5
event_matching_type : str
Event matching type. Set ‘optimal’ for graph-based matching, or ‘greedy’ for always select first found match. Greedy type of event matching is kept for backward compatibility. Both event matching types produce very similar results, however, greedy matching can be sensitive to the order of reference events. Use default ‘optimal’ event matching, if you do not intend to compare your results to old results. Default value ‘optimal’
-
__init__
(event_label_list, evaluate_onset=True, evaluate_offset=True, t_collar=0.2, percentage_of_length=0.5, event_matching_type='optimal', **kwargs)[source]¶ Constructor
Parameters: event_label_list : list
List of unique event labels
evaluate_onset : bool
Evaluate onset. Default value True
evaluate_offset : bool
Evaluate offset. Default value True
t_collar : float (0,]
Time collar used when evaluating validity of the onset and offset, in seconds. Default value 0.2
percentage_of_length : float in [0, 1]
Second condition, percentage of the length within which the estimated offset has to be in order to be consider valid estimation. Default value 0.5
event_matching_type : str
Event matching type. Set ‘optimal’ for graph-based matching, or ‘greedy’ for always select first found match. Greedy type of event matching is kept for backward compatibility. Both event matching types produce very similar results, however, greedy matching can be sensitive to the order of reference events. Use default ‘optimal’ event matching, if you do not intend to compare your results to old results. Default value ‘optimal’
Methods
__init__
(event_label_list[, evaluate_onset, ...])Constructor class_wise_accuracy
(event_label)class_wise_count
(event_label)Class-wise counts (Nref and Nsys) class_wise_error_rate
(event_label)Class-wise error rate metrics (error_rate, deletion_rate, and insertion_rate) class_wise_f_measure
(event_label)Class-wise f-measure metrics (f_measure, precision, and recall) evaluate
(reference_event_list, ...)Evaluate file pair (reference and estimated) overall_accuracy
([factor])overall_error_rate
()Overall error rate metrics (error_rate, substitution_rate, deletion_rate, and insertion_rate) overall_f_measure
()Overall f-measure metrics (f_measure, precision, and recall) reset
()Reset internal state result_report_class_wise
()Report class-wise results result_report_class_wise_average
()Report class-wise averages result_report_overall
()Report overall results result_report_parameters
()Report metric parameters results
()All metrics results_class_wise_average_metrics
()Class-wise averaged metrics results_class_wise_metrics
()Class-wise metrics results_overall_metrics
()Overall metrics validate_offset
(reference_event, estimated_event)Validate estimated event based on event offset validate_onset
(reference_event, estimated_event)Validate estimated event based on event onset -